US009417774B2

a2 United States Patent

Fletcher et al.

US 9,417,774 B2
*Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PROACTIVE MONITORING TREE WITH
NODE PINNING FOR CONCURRENT NODE
COMPARISONS

(71)
(72)

Applicant: Splunk Inc., San Francisco, CA (US)

Inventors: Tristan Fletcher, Pacifica, CA (US);
Cary Glen Noel, Pleasant Hill, CA (US);
Alok Bhide, Mountain View, CA (US)

(73)

")

Assignee: SPLUNK INC., San Francisco, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 23 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/609,080

Filed: Jan. 29, 2015

Prior Publication Data

US 2015/0149914 A1 May 28, 2015

(65)

Related U.S. Application Data

(63) Continuation of application No. 14/253,697, filed on
Apr. 15, 2014, now Pat. No. 9,015,716, which is a
continuation-in-part of application No. 14/167,316,
filed on Jan. 29, 2014, and a continuation-in-part of
application No. 13/874,423, filed on Apr. 30, 2013,
now Pat. No. 8,904,389, and a continuation-in-part of
application No. 13/874,434, filed on Apr. 30, 2013,
now Pat. No. 8,683,467, and a continuation-in-part of
application No. 13/874,441, filed on Apr. 30, 2013,
now Pat. No. 9,164,786, and a continuation-in-part of
application No. 13/874,448, filed on Apr. 30, 2013.

Provisional application No. 61/883,869, filed on Sep.
27, 2013, provisional application No. 61/900,700,
filed on Nov. 6, 2013, provisional application No.
61/979,484, filed on Apr. 14, 2014.

(60)

DETERMINE PERFORMANCE STATES FOR
A PLURALITY OF ENTITIES THAT
COMPRISE THE COMPUTING
ENVIRCNMENT BASED ON VALUES CF A
PERFORMANCE METRIC FOR THE

ENTITIES
882

v

DISPLAY THE COMPUTING ENVIRONMENT
AS A TREE COMPRISING NODES
REPRESENTING THE PLURALITY OF
ENTITIES AND EDGES REPRESENTING
PARENT-CHILD RELATIONSHIPS BETWEEN
THE PLURALITY OF ENTITIES
884

v

IN RESPONSE TO THE USER SELECTING A
FIRST NODE iN THE TREE TO BE PINNEDC,
DISPLAY A FIRST DETAIL PANEL FOR THE
FIRST NODE, WHEREIN THE FIRST DETAIL

PANEL DISPLAYS STATE INFORMATION

FGR THE FIRST NODE, WHEREIN THE
STATE INFORMATICN IS FROZEN AT THE
TIME OF RINNING
886

(51) Int.CL
GOGF 9/46
GOGF 3/0484
HOIL 41/22
GOGF 9/455
GOGF 11/32
GOGF 3/0482
GOGF 11/34
USS. CL

CPC

(2006.01)
(2013.01)
(2013.01)
(2006.01)
(2006.01)
(2013.01)
(2006.01)
(52)
GOGF 3/04842 (2013.01); GOGF 3/0482
(2013.01); GOGF 9/45533 (2013.01); GO6F

11/323 (2013.01); HOIL 41/22 (2013.01);

GOGF 11/3409 (2013.01); GO6F 2201/815
(2013.01)

(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,738,333 B1* 5/2014 Behera GOG6F 9/5061

703/2

2009/0049372 Al 2/2009 Goldberg

(Continued)
Primary Examiner — Meng An
Assistant Examiner — James J Lee
(74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
Dowler LLP

(57) ABSTRACT

In some embodiments, in response to the user selecting a first
node in the tree to be pinned, the system displays a first detail
panel for the first node, wherein the first detail panel displays
state information for the first node, wherein the state infor-
mation is frozen at the time of pinning. Moreover, in response
to the user selecting a second node in the tree to be pinned, the
system displays a second detail panel for the second node,
wherein the second detail panel displays state information for
the second node, wherein the state information is frozen at the
time of pinning. Note that the first detail panel is displayed
concurrently with the second detail panel to facilitate com-
paring state information between the first and second nodes.

20 Claims, 18 Drawing Sheets

3

IN RESPONSE TO THE USER SELECTING A
SECCND NODE IN THE TREE T0O BE
PINNED, DISPLAY A SECOND DETAIL
FANEL FOR THE SECOND NODE, WHEREIN
THE SECOND DETAIL PANEL DISPLAYS
STATE INFORMATION FOR THE SECOND
NCDE, WHEREIN THE STATE INFORMATION
18 FRCZEN AT THE TIME OF PINNING,
WHEREIN THE FIRST DETAIL PANEL IS
DISPLAYED CONCURRENTLY WITH THE
SECOND DETAIL PANEL TO FACILITATE
COMPARING STATE INFORMATION
BETWEEN THE FIRST AND SECOND NODES
888

|

aND

US 9,417,774 B2

Page 2
(56) References Cited 2012/0311475 Al 12/2012 Wong
2014/0059488 Al 2/2014 El-Jayousi et al.
U.S. PATENT DOCUMENTS 2014/0201642 Al 7/2014 Vicat-Blanc

2014/0280894 Al 9/2014 Reynolds et al.
2012/0023429 Al 1/2012 Medhi . .
2012/0036484 Al 2/2012 Zhang et al. * cited by examiner

U.S. Patent Aug. 16, 2016 Sheet 1 of 18 US 9,417,774 B2

COMPUTING ENVIRONMENT 100

O N
PROACTIVE PERFORMANCE
MONITORING -MONITORING
TREE TOOL
106 108
USER
102

USER INTERFACE 104

TN

DATA
44— SOURCES
112

PERFORMANCE
DATA
110

FIG. 1

PROACTIVE
MONITORING
TREE
106

FIG. 2A

US 9,417,774 B2

Sheet 2 of 18

Aug. 16, 2016

U.S. Patent

lllll
.- e

See -
:::::::
|||||||||

e’

SUNVdAXd

~—.
con
..
-~
enn
R
e

d¢ Old

JJON SIHL
............. . S10313S
H3IASN

SANVdX3

JAON SIHL
S1037138
¥3asN

US 9,417,774 B2

Sheet 3 of 18

Aug. 16, 2016

9s¢
1S0OH

1SOH 1SOH

L
-
2
®
I

v0g
INTLSAS 90¢
V00T d38N

]

L O
10€
MHOMLIN

£0e
w3lsas S0¢
voo1 938N

i

wn

w0

d J
oy N
wn €9
jap] [ap]
N~ (o]
<t <t
Z] °.°.|
3] V‘I
<t I
jap] s

oLl 1SOH 1SOH 1SOH

L
-
[%2]
@)
I

v.ivd
FONYWHOSH3d

o
h
&)
I
L
—
2
O
X

:i]

@&

5

[

D

P

% ©

o
I
.

7 o

OlD

IO’J

——

Ho

o3

X

5w

O

I

uonceo

= -

w U)g

e IERR
g SN SRS

0L€

WILSAS 80¢ AN
ONIHOLINOW IdV HOSIANGAJAH
WA

DDDE)-

D E)

00¢
WILSAS
HIAYES

HDEO

secvveascccmrasnccovEaansnen

U.S. Patent

U.S. Patent Aug. 16,2016

START

RETRIEVE VALUES FOR
PERFORMANCE METRICS AND
ASSOCIATED ARCHITECTURAL

INFORMATION THROUGH API
402

STORE PERFORMANCE METRIC
VALUES IN PERFORMANCE
DATABASE ALONG WITH
TIMESTAMPS AND ARCHITECTURAL
INFORMATION
404

v

WAIT FOR A SPECIFIED AMOUNT
OF TIME
406

FIG. 4A

Sheet 4 of 18

START

RECEIVE SELECTIONS FOR ENTITY TYPE,
PERFORMANCE METRIC AND TIME RANGE
FROM USER
412

v

RETRIEVE VALUES FOR SELECTED
PERFORMANCE METRIC, ENTITY TYPE
AND TIME RANGE FROM PERFORMANCE
DATABASE
414

DETERMINE PERFORMANCE STATES FOR
ENTITIES BY COMPARING RETRIEVED
VALUES OF PERFORMANCE METRICS

AGAINST THRESHOLD VALUES FOR THE
PERFORMANCE STATES
416

v

RETRIEVE ARCHITECTURAL INFORMATION
SPECIFYING MANY-TO-ONE
RELATIONSHIPS BETWEEN ENTITIES
417

v

GENERATE PROACTIVE MONITORING TREE
BASED ON THE ARCHITECTURAL
INFORMATION AND THE PERFORMANCE
STATES STARTING WITH LEAF NODES AND
CONSTRUCTING SUCCESSIVE LEVELS OF
PARENT NODES FROM CHILD NODES
418

DISPLAY PROACTIVE MONITORING TREE
TO USER
420

FIG. 4B

US 9,417,774 B2

U.S. Patent

Aug. 16, 2016

MOST SEVERE

/ CHILD OF 515

CHILD OF 514

Sheet 5 of 18

MOST SEVERE

PROACTIVE
MONITORING
TREE
500

SORTED ORDER BASED ON SEVERITY STATE

FIG. 5A

START

DETERMINE PERFORMANCE STATES FOR
A PLURALITY OF ENTITIES THAT
COMPRISE THE COMPUTING
ENVIRONMENT
532

v

v

DISPLAY THE COMPUTING ENVIRONMENT
AS A TREE COMPRISING NODES
REPRESENTING THE PLURALITY OF
ENTITIES AND EDGES REPRESENTING
PARENT-CHILD RELATIONSHIPS BETWEEN
THE PLURALITY OF ENTITIES
534

WHILE DISPLAYING THE TREE, DISPLAYING
THE CHILD NODES FOR EACH PARENT
NODE INVOLVES: DETERMINING A SORTED
ORDER FOR THE CHILD NODES BASED ON
THE PERFORMANCE STATES OF THE
CHILD NODES; AND DISPLAYING THE CHILD
NODES IN THE SORTED ORDER
536

END

FIG. 5B

US 9,417,774 B2

U.S. Patent Aug. 16,2016

STATE
DISTRIBUTION RING
630

STATE
631

Sheet 6 of 18 US 9,417,774 B2

STATE
633

STATE
634

DESCENDANT
NODES
635

FIG. 6A

START

v

DETERMINE PERFORMANCE STATES FOR
A PLURALITY OF ENTITIES THAT
COMPRISE THE COMPUTING
ENVIRONMENT BASED ON VALUES OF A
PERFORMANCE METRIC FOR THE
ENTITIES
662

e

DISPLAY THE COMPUTING ENVIRONMENT
AS A TREE COMPRISING NODES
REPRESENTING THE PLURALITY OF
ENTITIES AND EDGES REPRESENTING
PARENT-CHILD RELATIONSHIPS BETWEEN
THE PLURALITY OF ENTITIES

FOR EACH PARENT NODE IN THE TREE,
DETERMINE COUNTS OF ONE OR MORE
PERFORMANCE STATES FOR
DESCENDANTS OF THE PARENT NODE IN
THE TREE; AND DISPLAY A GRAPHICAL
REPRESENTATION OF THE DETERMINED
COUNTS WHILE DISPLAYING THE PARENT
NODE, WHEREIN THE GRAPHICAL
REPRESENTATION INCLUDES A CIRCULAR
RING COMPRISING VISUALLY DISTINCT
SECTIONS ASSOCIATED WITH DIFFERENT
PERFORMANCE STATES, WHEREIN THE
VISUALLY DISTINCT SECTIONS ARE SIZED

PROPORTIONATELY WITH THE

THE LEAF NODE
666

DETERMINED COUNTS FOR THE
664 ASSOCIATED PERFORMANCE STATES.
FOR EACH LEAF NODE IN THE TREE,
DISPLAY AN INDICATOR FOR A END
PERFORMANCE STATE ASSOCIATED WITH

FIG. 6B

U.S. Patent Aug. 16,2016

Sheet 7 of 18 US 9,417,774 B2

«
19
2

SR S
75% Fiiinss

METRIC VALUE

START

e

e -
A
ST,
R

4
L R o
@:o,@:;;:ﬁ*g::##:m“

SELECTED
NODE
740

'y ’,1
e, ‘%‘ﬁ’f*
oty
LS

sttt tatenster

T

K 4
S SRR
S

ST ST
RIS RIRIELIES
SRS

TIME

FIG. 7A

v

DETERMINE VALUES FOR A
PERFORMANCE METRIC FOR A PLURALITY
OF ENTITIES THAT COMPRISE THE
COMPUTING ENVIRONMENT
772

v

DISPLAY THE COMPUTING ENVIRONMENT
AS A TREE COMPRISING NODES
REPRESENTING THE PLURALITY OF
ENTITIES AND EDGES REPRESENTING
PARENT-CHILD RELATIONSHIPS BETWEEN
THE PLURALITY OF ENTITIES
774

e

FOR A SELECTED NODE IN THE TREE,
DISPLAY A CHART WITH A LINE
ILLUSTRATING HOW A VALUE OF THE
PERFORMANCE METRIC FOR THE
SELECTED NODE VARIES OVER TIME
AGAINST A BACKGROUND ILLUSTRATING
HOW A DISTRIBUTION OF THE
PERFORMANCE METRIC FOR A
REFERENCE SET OF NODES IN THE TREE
VARIES OVER TIME
776

END

FIG. 7B

U.S. Patent

Aug. 16, 2016

FIG. 8A

START

Sheet 8 of 18

CONFIG INFO 842

DETAIL e

PANEL

arr | MWW
GRAPH 843
CONFIG INFO

DETAIL freememremsmemeammmeraennnnas

PANEL | MWW
GRAPH

PIN BOARD 850

DETERMINE PERFORMANCE STATES FOR
A PLURALITY OF ENTITIES THAT
COMPRISE THE COMPUTING
ENVIRONMENT BASED ON VALUES OF A
PERFORMANCE METRIC FOR THE
ENTITIES
882

v

A 4

DISPLAY THE COMPUTING ENVIRONMENT
AS A TREE COMPRISING NODES
REPRESENTING THE PLURALITY OF
ENTITIES AND EDGES REPRESENTING
PARENT-CHILD RELATIONSHIPS BETWEEN
THE PLURALITY OF ENTITIES
884

IN RESPONSE TO THE USER SELECTING A
SECOND NODE IN THE TREE TO BE
PINNED, DISPLAY A SECOND DETAIL

PANEL FOR THE SECOND NODE, WHEREIN

THE SECOND DETAIL PANEL DISPLAYS
STATE INFORMATION FOR THE SECOND

NODE, WHEREIN THE STATE INFORMATION

IS FROZEN AT THE TIME OF PINNING,
WHEREIN THE FIRST DETAIL PANEL IS
DISPLAYED CONCURRENTLY WITH THE
SECOND DETAIL PANEL TO FACILITATE

COMPARING STATE INFORMATION
BETWEEN THE FIRST AND SECOND NODES
888

v

IN RESPONSE TO THE USER SELECTING A
FIRST NODE IN THE TREE TO BE PINNED,
DISPLAY A FIRST DETAIL PANEL FOR THE
FIRST NODE, WHEREIN THE FIRST DETAIL
PANEL DISPLAYS STATE INFORMATION
FOR THE FIRST NODE, WHEREIN THE
STATE INFORMATION IS FROZEN AT THE
TIME OF PINNING
886

8ND

FIG. 8B

US 9,417,774 B2

US 9,417,774 B2

Sheet 9 of 18

Aug. 16, 2016

U.S. Patent

JONVY INIL

SADId 38N

O-LIN
SHOId ¥38N

{

WA HO LSOH
AdAL ALLLNG
SHOId d3sn

)

US 9,417,774 B2

Sheet 10 of 18

Aug. 16, 2016

U.S. Patent

g6 Old

BLIE LET TR

I T -AR i e il Lo s L L

SR N SO P ZEL O] i ey

TR YR R S

3.

GO ol B

5

Frempial-sodasands

| -t pondip-Byd-ang
STA

¥iThyng

waghyad

g

| TEOGE ROYTNES

FT-RLUATIRAERY |

fa g et
Z1-uTR-Pg
g 18-

BT

sl junn-ag |

pman S e s s |

TR A - A RO RO

JONVHO
Si3AON 08
JONVHO

S ATHD
1SHOM

NIHANHO
a3y 40
ASNvOo34
a4
S1 300N

SI 300N
08 N3IZHO
SEATNHD

1SHOM

a3y
S 3AON OS5 d3d NIVINOD
NIHATHO FLVNILTN

U.S. Patent Aug. 16, 2016 Sheet 11 of 18 US 9,417,774 B2

REPRESENTS ALL NODES IN TREE
MOST DESCENDANTS ARE GREEN
BUT 15-20% ARE RED

s

' EVERY
DESCEN-
DANT
NODE IS
GREEN

THIS
NODE HAS A HIGHER

PROPORTION OF RED
THAN SIBLINGS OR

. PARENT AND THEREFORE

COULD BE INTERESTING

TO EXAMINE

US 9,417,774 B2

Sheet 12 of 18

Aug. 16, 2016

U.S. Patent

ae 'old

g s

SR LG Y

T BLOZACHY - HT

SRR
FEAREY N O T

-ty
11289934

R e AR

10~5.ix- sy

g il 4 A R L S
v LRV

- g Rk

THEGT-I DT

§ DM IGR LD SOQEEE ey Aulingea ame

LR AT

PESIES A
RPN SIS - SR

1oy Suid- Sl -Aep

H - R TR -5 —

e B G B,

PP
g Emde o

PR RIS

FE
LT AR

TR -

TTHTHATIDS KRG - BN Bl

FO-GL A

ool

s R gy

BOGLRA. T U

-

’ P S
Fhi- G-t G Syt
i BEiueE .ol

G- ka2 D .
Tl O - DDA ol

- Gmﬁwn.nmvw.u.nmlu. RN

U R et)

Hv4 Sd3H
ON

U.S. Patent Aug. 16, 2016 Sheet 13 of 18 US 9,417,774 B2

UPPER DARK-
SHADED REGION
HIGHEST 20% OF
ENTITIES

LOWER DARK-
SHADED REGION
LOWEST 25% COF
ENTITIES

WHITE LINE REPRESENTS
AVERAGE VALUE OF DATA FOR
THE SELECTED ENTITY/BRANCH

MIDDLE LIGHT-SHADED REGION
MIDDLE 50% OF
ENTITIES

FIG. 9E

U.S. Patent Aug. 16, 2016 Sheet 14 of 18 US 9,417,774 B2

LEAF NODE PINNED DETAIL

FIG. 9F

U.S. Patent Aug. 16, 2016 Sheet 15 of 18 US 9,417,774 B2

1005, 1005 1005
Srrane ' Source Seiios
1 OO(')“; MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
i -
i i
] §
i 1001 1001 .. ;
i Forwarder T Fomwarder i
i §
; }
i §
i i
i]
{ §
§ {
i i
| i
E 1002, 1002- ., 1002-, ;
E <<<<<<<<<<< ndexay § o fnexer iniees ;
} §
{ {
§]
i i
i i
i §
i i
E Deta | ;
! Store !
i {
§ S }
E 1004 .. ;
! Search 5
E Erging ;
e e e o e o o s o st o s s st s et 5 o s s o s ot 5 o o

FIG. 10

U.S. Patent Aug. 16, 2016 Sheet 16 of 18 US 9,417,774 B2

~1100
’
) 1101
Reneive data
1102
Segrment datg o svends
- 1103
Determine time stamps rom events

. ‘ 1104

Associate e slamps with evends '
‘ 1105

Transfom svents
RN

% o 11108

ilentily keywords In events §

mmmmmmmm e s s s e e

X

f . , 11107

| Updats keyword index {

Lo e e e o e e e o e

1

-1108

Store sverds in data stors

FIG. 11

U.S. Patent

Aug. 16, 2016 Sheet 17 of 18

1200
&

Saarch head recelvas quary fom search engine

1201

Semsch head distribudes query o indexers

-1202

Indexer{s) saarch data store for
guenrasponsive svents

. 1203

Search haad combings any pastial rasulis
of evards Yo producs final resull

1204

FIG. 12

US 9,417,774 B2

U.S. Patent Aug. 16, 2016 Sheet 18 of 18 US 9,417,774 B2

Original search: 1301
search “error” | stats count BY host

Sent to peers: 1302
search “error” | prestats count BY host

Executed by search head:1303
¥Merge the prestats results received from peers (reduce)

FIG. 13

US 9,417,774 B2

1
PROACTIVE MONITORING TREE WITH
NODE PINNING FOR CONCURRENT NODE
COMPARISONS

RELATED APPLICATIONS

This application is a continuation of, and hereby claims
priority under 35 U.S.C. §120 to, pending U.S. patent appli-
cation Ser. No. 14/253,697 filed on 15 Apr. 2014, which is
itself a continuation-in-part of: pending U.S. patent applica-
tion Ser. No. 14/167,316 filed on 29 Jan. 2014; pending U.S.
patent application Ser. No. 13/874,423 filed 30 Apr. 2013;
pending U.S. patent application Ser. No. 13/874,434 filed 30
Apr. 2013; pending U.S. patent application Ser. No. 13/874,
441 filed 30 Apr. 2013; and pending U.S. patent application
Ser. No. 13/874,448 filed 30 Apr. 2013. This application
further claims benefit under 35 U.S.C. §119 to U.S. Provi-
sional Application No. 61/883,869 filed 27 Sep. 2013, U.S.
Provisional Application No. 61/900,700 filed 6 Nov. 2013,
and U.S. Provisional Application No. 61/979,484 filed 14
Apr. 2014. The above-listed applications are hereby incorpo-
rated by reference herein.

This application is also related to U.S. patent application
Ser. No. not yet assigned, filed Apr. 15, 2014, entitled “Pro-
active Monitoring Tree with Severity State Sorting” by inven-
tors Tristan Fletcher and Cary Noel; U.S. patent application
Ser. No. not yet assigned, filed Apr. 15, 2014, entitled “Pro-
active Monitoring Tree with State Distribution Ring” by
inventors Tristan Fletcher and Cary Noel; and U.S. patent
application Ser. No. not yet assigned, filed Apr. 15, 2014,
entitled “Proactive Monitoring Tree Providing Distribution
Stream Chart with Branch Overlay” by inventors Tristan
Fletcher and Cary Noel.

RELATED ART

The disclosed embodiments generally relate to techniques
for monitoring and analyzing performance in a computer
system. More specifically, the disclosed embodiments relate
to the design of a performance-monitoring system that pro-
vides a user interface with a proactive monitoring tree that
facilitates visualizing performance information for virtual
machines and associated host systems in a hierarchically
structured computing environment.

BACKGROUND

Organizations are increasingly relying on cloud-based
computing systems to perform large-scale computational
tasks. Such cloud-based computing systems are typically
operated by hosting companies that maintain a sizable com-
putational infrastructure, often comprising thousands of serv-
ers sited in geographically distributed data centers. Custom-
ers typically buy or lease computational resources from these
hosting companies. The hosting companies in turn provision
computational resources according to the customer’s require-
ments and then enable the customers to access these
resources.

In many cases, cloud-based computing systems provide a
virtualized computing environment, wherein tasks run on
“virtual machines” that execute on underlying physical host
systems. Such virtualized computing environments enable
computational tasks to be easily moved among host systems
to facilitate load balancing and fault tolerance. However, they
also complicate the process of diagnosing and resolving per-
formance problems because bottlenecks can arise at both the
virtual-machine level and the host-system level.

10

15

20

25

30

35

40

45

50

55

60

65

2

Existing performance-monitoring tools do not provide an
easy way to diagnose performance problems in such comput-
ing systems.

BRIEF DESCRIPTION OF THE FIGURES

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1 illustrates a performance-monitoring tool that dis-
plays a proactive monitoring tree in accordance with the
disclosed embodiments.

FIG. 2A illustrates an exemplary proactive monitoring tree
in accordance with the disclosed embodiments.

FIG. 2B illustrates how nodes in a proactive monitoring
tree can be selectively expanded in accordance with the dis-
closed embodiments.

FIG. 3 illustrates a system that facilitates executing virtual
machines in accordance with the disclosed embodiments.

FIG. 4A presents a flowchart illustrating how performance
metrics can be collected in accordance with the disclosed
embodiments.

FIG. 4B presents a flowchart illustrating how a proactive
monitoring tree can be generated in accordance with the
disclosed embodiments.

FIG. 5A illustrates a sorted proactive monitoring tree in
accordance with the disclosed embodiments.

FIG. 5B presents a flowchart illustrating how nodes in a
proactive monitoring tree can be sorted and displayed in
accordance with the disclosed embodiments.

FIG. 6A illustrates an exemplary state distribution ring in
accordance with the disclosed embodiments.

FIG. 6B presents a flowchart illustrating how a state distri-
bution ring can be displayed in accordance with the disclosed
embodiments.

FIG. 7A presents a performance graph for a branch of the
tree overlaid on a distribution of the performance metric over
nodes in the tree in accordance with the disclosed embodi-
ments.

FIG. 7B presents a flowchart illustrating how the graph
illustrated in FIG. 7A can be generated in accordance with the
disclosed embodiments.

FIG. 8A illustrates a system that facilitates node pinning in
accordance with the disclosed embodiments.

FIG. 8B presents a flowchart illustrating the process of
displaying a pin board for a proactive monitoring tree in
accordance with the disclosed embodiments.

FIG. 9A illustrates a metric-selection screen in accordance
with the disclosed embodiments.

FIG. 9B illustrates a tree with parent nodes that are colored
based on the performance states of their child nodes in accor-
dance with the disclosed embodiments.

FIG. 9C illustrates a tree with state distribution rings in
accordance with the disclosed embodiments.

FIG. 9D illustrates a tree with sorted nodes in accordance
with the disclosed embodiments.

FIG. 9E illustrates another example of the graph illustrated
in FIG. 9D in accordance with the disclosed embodiments.

FIG. 9F illustrates an exemplary pin board in accordance
with the disclosed embodiments.

FIG. 10 illustrates an example a block diagram of a data
intake and query system in accordance with the disclosed
embodiments.

FIG. 11 illustrates a flowchart of a process that indexers
may use to process, index, and store data received from for-
warders in accordance with the disclosed embodiments.

US 9,417,774 B2

3

FIG. 12 illustrates a flowchart of a process that a search
head and indexers perform during a typical search query in
accordance with the disclosed embodiments.

FIG. 13 illustrates an example of a search query received
from a client that the search head can split into two parts in
accordance with the disclosed embodiments.

DETAILED DESCRIPTION

Overview

The disclosed embodiments relate to a performance-moni-
toring system that provides a user interface that displays a
proactive monitoring tree in accordance with the disclosed
embodiments. This proactive monitoring tree enables a user
to easily view and understand relationships among various
factors that affect performance of a hierarchically structured
computing system. More specifically, a user can navigate the
proactive monitoring tree to gain a better understanding of the
performance of an associated computing system by examin-
ing values for a selected performance metric across a set of
entities (e.g., virtual machines and host systems) that com-
prise the computing system, wherein the entities are repre-
sented as nodes in the proactive monitoring tree. Values for
the selected metric can be aggregated for each of the entities
over a selected time range and then compared against a set of
thresholds to determine performance states for the entities.
These performance states can be represented by using difter-
ent colors to display associated nodes of the proactive moni-
toring tree. For example, performance states in a virtual
machine environment can indicate whether the performance
for a specific entity (virtual machine or host system) is in a
critical state (red), a warning state (orange), a normal state
(green), or an unknown/offline state (gray).

The proactive monitoring tree enables a user to easily navi-
gate the hierarchy by selectively expanding nodes represent-
ing sets of entities (e.g., computing clusters) to view perfor-
mance information for lower-level nodes associated with
lower-level entities (e.g., virtual machines or host systems.)
This ease of navigation enables a user to quickly diagnose the
root cause of a performance problem.

An exemplary performance-monitoring system that pro-
vides a proactive monitoring tree system is illustrated in FI1G.
1. This system includes a performance-monitoring tool 108
comprising a software application that enables a user to moni-
tor and analyze a set of performance data 110.

This performance data 110 can originate from various data
sources 112. In general, performance data 110 can comprise
any type of data associated with entities that can be hierar-
chically organized with a one-to-many relationship between
entities. For example, performance data 110 can originate
from a virtual machine system and can specify utilization
rates for various resources, such as central-processing unit
(CPU) capacity, memory capacity and communication band-
width for individual virtual machines or underlying host sys-
tems that comprise the virtual machine system. In another
example, performance data 110 can originate from a database
containing economic data. In this example, the data can relate
to economic indicators such as per capita GDP, unemploy-
ment rates, and income distribution for the different states,
counties and cities. In another example, performance data
110 can originate from a database containing census data. In
this example, the data can relate to racial, religious and ethnic
compositions of various states, counties and cities. In yet
another example, performance data 110 can originate from a
database containing information on communicable diseases.
In this example, the data can relate to the number of cases of
specific diseases and associated rates of mortality for differ-

10

15

20

25

30

35

40

45

50

55

60

65

4

ent countries, states and cities. In another example, perfor-
mance data 110 can originate from a database containing
financial information for a corporation. In this example, the
data can relate to financial performance for various subsid-
iaries, divisions and departments within the corporation.

Performance data 110 can also be collected using time
windows that vary in size. For example, the data sources 112
can provide data values collected over time windows that
range in size from microseconds, to seconds, to years.

Moreover, performance data 110 can comprise real-time
data that is collected periodically (e.g., every three minutes)
from an active system. Alternatively, performance data 110
can comprise non-real-time data, such as census data, that is
collected every ten years.

Performance data 110 can also include values for many
different types of performance metrics. For example, the per-
formance metrics for a virtual machine system can include:
(1) CPU-related performance metrics, such as utilization per
host, virtual machine, resource pool or compute resource; (2)
disk-related performance metrics, such as disk utilization per
host, virtual machine, or datastore, wherein the disk metrics
can include I/O performance (such as latency and read/write
speeds), and utilization metrics for storage as a finite
resource; (3) memory-related performance metrics, such as
memory utilization per host, virtual machine, resource pool,
or compute resource; (4) network-related performance met-
rics, such as network utilization for both physical and virtual
network interface controllers (NICs) and other network
devices, such as virtual switches that support connectivity
among system components, such as hosts, virtual machines
and virtual machine kernels; (5) energy-usage statistics, such
as energy usage per host; (6) data traffic-related performance
metrics, such as storage path data traffic statistics and storage
adapter data traffic statistics; (7) overall system availability
performance metrics, such as uptime and system heartbeat
statistics; (8) cluster-related performance metrics, such as
cluster utilization; and (9) virtual machine performance sta-
tistics, such as statistics related to virtual machine power and
provisional operations. For more details on possible perfor-
mance metrics, please see U.S. patent Ser. No. 14/167,316
filed 29 Jan. 2014 that provides a list of such performance
metrics and is hereby incorporated by reference herein. Also,
see “vSphere Monitoring and Performance” Update 1,
vSphere 5.5, EN-001357-00, http://pubs.vmware.com/
vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-esxi-
vcenter-server-551-monitoring-performance-guide.pdf.

During operation, performance-monitoring tool 108 dis-
plays a user interface 104 to a user 102. User interface 104
displays a proactive monitoring tree 106 comprising nodes
associated with specific entities, such as a virtual machine or
a host system, or a set of entities, such as a cluster of host
systems or multiple clusters. These nodes provide a visual
indicator (e.g., a color) to indicate performance states (asso-
ciated with a specific performance metric) for each entity. For
example, a red-colored node may indicate that a value of a
performance metric for the node is in a critical range. Note
that a user 102 is able to navigate the nodes of proactive
monitoring tree 106 by selectively expanding lower-level
nodes to view performance information for entities repre-
sented by the nodes. This enables the user to determine the
root cause of a performance problem by quickly identifying
an entity (e.g., virtual machine) that is causing a performance
bottleneck for the system.

Proactive Monitoring Tree

FIG. 2A illustrates an exemplary proactive monitoring tree
106 in accordance with the disclosed embodiments. A proac-
tive monitoring tree 106 can generally be used to represent

US 9,417,774 B2

5

data values for any entities that have one-to-many relation-
ships (e.g., parent-child relationships) and are hierarchically
structured to form one or more trees. For example, in a com-
puting system that supports execution of virtual machines,
each node in the proactive monitoring tree 106 can represent:
(1) a virtual machine; (2) a host system that executes one or
more virtual machines; (3) a cluster comprising one or more
host systems; or (4) a virtual center comprising one or more
clusters. Hence, in FIG. 2A nodes 222-228 can represent
virtual machines, nodes 217-221 can represent host systems
that execute virtual machines, nodes 215-216 can represent
computing clusters comprising multiple host systems, and
node 214 can represent a virtual center comprising multiple
clusters.

Each node in proactive monitoring tree 106 can be colored
to indicate a performance state for the associated entity. For
example, if the performance metric is memory utilization, a
node for a virtual machine can be colored: red to indicate that
memory utilization for the virtual machine is in a critical
range (e.g., over 99%); orange to indicate a warning range
(e.g., 90% to 99%); green to indicate a normal range (e.g., 0%
to 90%); and gray to indicate that memory utilization is
unknown for the virtual machine. Note that performance
states, and the associated ranges of values for the perfor-
mance states, can be fixed or may be configurable by a user.

Performance states can alternatively be indicated in difter-
ent ways (instead of by using colors), such as by using dif-
ferent patterns (e.g., cross-hatching or dots), through difter-
ent levels of gray-shading, or through textual labels that
explicitly announce the performance state.

Moreover, the performance state for a parent node can
depend on the performance states of the parent’s children. For
example, the performance state for a host node can depend on
the worst-case performance state for any virtual machine that
executes on the host node, the performance state for a cluster
node can depend on the worst-case performance state for any
hostnode in the cluster, and the performance state for a virtual
center node can depend on the worst-case performance state
for any cluster in the virtual center.

More specifically, referring to FIG. 2A, the performance
state for node 215 is red because the worst-case performance
state for child nodes 219-221 is red; the performance state for
node 217 is orange because the worst-case performance state
for child nodes 222-225 is orange; the performance state for
node 218 is green because the worst-case performance state
for child nodes 226-228 is green; the performance state for
node 216 is orange because the worst-case performance state
for child nodes 217-218 is orange; and finally, the perfor-
mance state for node 214 is red because the worst-case per-
formance state for child nodes 215-216 is red.

Note that assigning performance states to a parent node
based on the worst-case states for associated child nodes
enables a viewer to determine quickly which branches of the
tree are likely to have performance problems. However, per-
formance states can be assigned to parent nodes in alternative
ways. For example, a performance state for a parent node can
depend on the average performance state (or most-common
performance state) of its child nodes.

Proactive monitoring tree 106 also supports navigational
operations to facilitate analyzing performance problems.
While displaying a large system comprising hundreds or
thousands of entities, it may be impractical to display nodes
for all of the entities at the same time. (Note that it may simply
be impossible to fit hundreds or thousands of nodes on a
single display screen.) Even if it is possible to display a large
number of nodes in a single display screen, the large number

10

15

20

25

30

35

40

45

50

55

60

65

6

of displayed nodes can obscure performance problems for a
small subset of the nodes that have performance problems.

To facilitate viewing systems with a large number of nodes,
proactive monitoring tree 106 enables the user to selectively
expand parent nodes to display underlying child nodes. For
example, FIG. 2B illustrates how nodes in the proactive moni-
toring tree can be selectively expanded by a user. On the
left-hand side of FIG. 2B, the proactive monitoring tree is
initially displayed with three nodes 214-216. At this point,
lower-level nodes are hidden from the user. When the user
selects (e.g., uses a mouse to click on) node 216, node 216
expands to reveal underlying child nodes 217-218. When the
user selects node 217, node 217 expands to reveal underlying
child nodes 222-225. Note that if an expanded tree does not
completely fit on the screen, the user can grab and move the
tree to change which portion of the expanded tree is displayed
on the screen. These navigational operations enable a user to
quickly “drill down” into a branch of interest to explore the
performance states of nodes in the branch. (Note that an
expanded node can be selected again to hide its underlying
children.)

By presenting performance information in this top-down
manner, the proactive monitoring tree enables a user to iden-
tify where a computing system is experiencing performance
problems, and to determine how the computing system can be
modified to alleviate these problems. Furthermore, by asso-
ciating performance values with a set of performance states, a
user can easily understand how different portions of the com-
puting system are performing.

We next describe how such performance data can be col-
lected in a server system that supports execution of virtual
machines.

Exemplary Performance-Monitoring System

FIG. 3 illustrates an exemplary server system 300 that
monitors the performance of a virtual machine environment
comprising a set of virtual machines and associated host
systems in accordance with the disclosed embodiments. As
illustrated in FIG. 3, server system 300 is accessed by local
systems 303 and 304 through network 301. Server system 300
can generally include a set of computational resources, such
as a cloud-based computer system comprising one or more
geographically distributed data centers. Local systems 303
and 304 can generally include any type of computer system
that can interact with server system 300. For example, local
systems 303 and 304 can include a personal computer system,
a server computer system, a laptop computer system, or a
smartphone. Network 301 can generally include any type of
network for connecting computer systems. For example, net-
work 301 can be a private network with dedicated communi-
cation links; a public network, such as the Internet; or a
virtual-private network (VPN) that operates over a public
network.

Local systems 303 and 304 include applications (not
shown) which are operated by users 305 and 306, respec-
tively. (Note that these applications can be native applications
or browser-based applications.) During operation, these
applications in local systems 303 and 304 can offload com-
putational tasks to server system 300 through interactions
with a hypervisor 302. Hypervisor 302 controls the operation
of a set of virtual machines 321-336 that execute computa-
tional tasks on a set of underlying physical host systems
341-356. Host systems 341-356 can generally include any
type of single-core or multi-core computer system including
associated memory resources that can be used to execute
computational tasks.

Hypervisor 302 assigns tasks to be executed on specific
virtual machines or sets of virtual machines based on the

US 9,417,774 B2

7

task’s requirements, the virtual machine’s capabilities, and
the load on the virtual machines. Hypervisor 302 also assigns
virtual machines to be executed on underlying physical host
systems based on the load on the underlying host systems and
computational requirements of the virtual machines.

During operation, hypervisor 302 records values for a
number of performance metrics for virtual machines 321-336
and host systems 341-356 and makes these performance met-
ric values available through an application programming
interface (API) 308.

Virtual machine (VM) monitoring system 310 periodically
makes calls through API 308 to retrieve values for these
performance metrics and then stores them in a database con-
taining performance data 110. More specifically, referring to
the flowchart illustrated in FIG. 4A, VM monitoring system
310 retrieves values for a set of performance metrics by
making calls through API 308 (step 402). Note that API 308
provides various methods or functions to retrieve values for
the performance metrics. In one embodiment, API 308 is an
API provided as part of the vSphere Hypervisor™ system
distributed by VMware, Inc. of Palo Alto, Calif. While
retrieving values for the performance metrics from hypervi-
sor 302 through API 308, VM monitoring system 310 also
retrieves architectural information specifying one-to-many
relationships between entities in the computing environment.
For example, this architectural information can specify which
virtual machines execute on each host, which hosts belong to
each cluster, and which clusters belong to each virtual cluster.

Next, VM monitoring system 310 stores the retrieved val-
ues for the performance metrics and associated timestamps
along with the architectural information in database 110 (step
404). Then, VM monitoring system 310 waits for a specified
amount of time (406), and returns to step 402 to retrieve the
next set of performance metric values.

Process of Generating a Proactive Monitoring Tree

FIG. 4B presents a flowchart illustrating how a proactive
monitoring tree 106 is generated by a performance-monitor-
ing tool 108 in accordance with the disclosed embodiments.
Performance-monitoring tool 108 starts with a database con-
taining performance data 110 for a set of entities (e.g., virtual
machines and hosts), where database 110 was previously
generated as described above with reference to FIG. 4A.

First, the system receives a number of selections from a
user, including: an entity type (e.g., virtual machine or host),
aperformance metric (e.g., CPU utilization) and a time range
(e.g., the past 24 hours) (step 412). Next, the system accesses
database 110 and retrieves values for the selected perfor-
mance metric, entity type and time range (step 414). For
example, if database 110 includes fields for performance
metric, entity type, entity identifier, and measurement time,
the retrieval process can involve executing a query against
database 110. This query retrieves values for the selected
metric (and associated entity identifiers) that match the spe-
cific entity type and time range. In one embodiment, database
110 is optimized to quickly return metric values for a specific
time range. For example, database 110 can store events for the
performance metric in a time-series index, wherein events are
stored and can be accessed based on their timestamps.

Next, the system uses the obtained metric values to deter-
mine performance states for the associated entities. This can
be accomplished by comparing the metric values against a set
of threshold values for the performance states (step 416).

The system also retrieves the architectural information
specifying the many-to-one relationships between the entities
at the time the performance metric values were gathered (step
417).

10

15

20

25

30

35

40

45

50

55

60

65

8

The system then generates the proactive monitoring tree
based on the determined performance states. This process can
involve starting from the leaf nodes and constructing succes-
sive levels of parent nodes from child nodes (step 418). For
example, the system can start with the leaf nodes, wherein
each leaf node is associated with a performance state for its
associated entity (e.g., virtual machine or host system). Next,
the performance state for each parent node can be determined
based on the worst-case performance state for each of its child
nodes. This process is repeated until the root node of the tree
is reached.

Finally, the system displays the proactive monitoring tree
to the user and allows the user to navigate the proactive
monitoring tree to analyze performance problems (step 420).
Proactive Monitoring Tree Features

In some embodiments, proactive monitoring tree 106 pro-
vides a number of features, including: (1) severity state sort-
ing, (2) a state distribution ring, (3) a distribution stream chart
with branch overlay, and (4) a pin board that displays detail
panels for nodes. These features are described in more detail
below.

Severity State Sorting

In some embodiments, branches of the proactive monitor-
ing tree are sorted based a count of the most severe nodes in
that branch. Hence, the branch with the highest number of the
highest severity leaf nodes will be displayed on the far left-
hand side of the tree. For example, in a system that associates
entities with a critical state, a warning state, a normal state and
an unknown state, the branch with the highest number of leaf
nodes in the critical state will be displayed at the far left-hand
side of the tree. If there are no leaf nodes in the critical state,
the branch with the highest number of leaf nodes in the
warning state will displayed at the far left-hand side of the
tree.

This sorting process is performed top down. Hence,
branches of the root node of the tree are first sorted based on
the highest count of highest severity leaf nodes. Then,
branches of each branch node are sorted in the same way.
Hence, branches with the highest number ot high severity leaf
nodes are always displayed on the far left-hand side of the
tree.

For example, in FIG. 5A, the tree 500 comprises nodes
514-528, wherein node 514 is the root node. The most severe
branch node 515 under root node 514 is displayed on the far
left-hand side of root node 514. This means that branch node
515 is associated with the most leaf nodes having the highest
severity state. Similarly, leaf node 519 has the highest severity
state of all leaf nodes under branch node 515. Sorting the
branches in this way enables a user to easily determine which
branches in the tree are experiencing the most performance
problems.

FIG. 5B presents a flowchart illustrating how tree nodes are
displayed in sorted order in accordance with the disclosed
embodiments. During operation, the system first determines
performance states for a plurality of entities that comprise the
computing environment (step 532). This can involve first
determining values for a performance metric of each of the
entities and then comparing the determined values against
thresholds to determine the performance states for the enti-
ties. Next, the system displays the computing environment as
a tree with nodes representing the plurality of entities and
edges representing parent-child relationships between the
plurality of entities (step 534). While displaying the tree, the
system displays the child nodes for each parent in sorted order
based on values of the performance states associated with the
child nodes (step 536).

US 9,417,774 B2

9

State Distribution Ring

The state distribution ring can be implemented as a ring
surrounding parent nodes of the tree. This ring provides an
indicator of the distribution of performance states for the leaf
nodes that fall under the parent node in the tree. More spe-
cifically, the ring is divided into visually distinct sections
associated with different performance states, wherein the
visually distinct sections are sized proportionately with the
determined counts of leaf nodes with the associated perfor-
mance states. Note that the visually distinct sections can be
displayed using different colors or different patterns. In this
way, the user can get a sense of the proportion of leafnodes in
a particular performance state for a particular branch of the
hierarchy. This can help a user in determining which nodes
they might be interested in clicking on to investigate. A node
with a higher proportion of leaf nodes in a more severe state
is probably more interesting to investigate.

For example, FIG. 6A illustrates a state distribution ring
630, which surrounds a node for a cluster (CL) associated
with a number of descendant nodes 635, including branch
nodes and leaf nodes. State distribution ring 630 is divided
into visually distinct sections 631-634 which are sized pro-
portionately with the counts of leaf nodes with the associated
performance states.

More specifically, FIG. 6B presents a flowchart illustrating
how a state distribution ring is displayed in accordance with
the disclosed embodiments. During operation, the system
determines performance states for a plurality of entities that
comprise the computing environment based on values of a
performance metric for the entities (step 662). In some
embodiments, the system determines the performance states
for the plurality of entities by comparing the values of the
performance metric for the plurality of entities against one or
more state-specific threshold values to determine the associ-
ated performance states for the plurality of entities.

Next, the system displays the computing environment as a
tree comprising nodes representing the plurality of entities
and edges representing parent-child relationships between
the plurality of entities (step 664). For each leaf node in the
tree, the system displays an indicator for a performance state
associated with the leaf node (step 666). For each parent node
in the tree, the system determines counts of one or more
performance states for descendants of the parent node in the
tree and then displays a graphical representation of the deter-
mined counts while displaying the parent node. In some
embodiments, displaying this graphical representation
involves displaying a circular ring comprising visually dis-
tinct sections associated with different performance states,
wherein the visually distinct sections are sized proportion-
ately with the determined counts for the associated perfor-
mance states (step 668).

Distribution Stream Chart with Branch Overlay

In some embodiments, when a user hovers a cursor over a
node in the tree, a special distribution stream chart appears as
is illustrated in FIG. 7A. In the foreground, this chart displays
a line for the selected node 740 that represents the average
values for the selected metric for the node. If the node is a leaf
node, the line represents the average for the leaf node. If the
selected node is a parent node, the line represents the average
values of the metric over all leaf nodes under the parent node.
(Alternatively, instead of displaying a line for the average
value of the leaf nodes, the system can allow the user to scroll
through lines for each of the leaf nodes under the parent.)

The background of the chart represents the distribution of
the selected metric’s values over a reference set of nodes in
the tree. This reference set of nodes can include the entire tree
or merely a subset of nodes in the tree. This distribution is

10

15

20

25

30

35

40

45

50

55

60

65

10

represented by a number of shaded regions. The interior,
cross-hatched region represents the middle 50% of the data.
This interior region is therefore defined as having edges rep-
resenting the 257 percentile of the data and the 75 percentile
of'the data. (Note that this is analogous to the box portion of
a box-and-whisker plot.) The lower exterior, darker-shaded
region has a lower bound of the minimum value of the data,
the 07 percentile if you will, and an upper bound at the 25”
percentile line. The upper exterior region is upper-bounded
by the 95% percentile line and lower-bounded by the 75%
percentile line. Note that the upper bound in a box-and-
whisker plot is typically the maximum value of the data.
However, this can be greatly affected by outliers; hence, the
illustrated embodiment limits the upper region to the 95%
percentile of the data. Note that the boundaries in the distri-
bution are not meant to be limited to the 0%, 25”, 757 and 957
percentiles. In general, the maximum value, other percentile
values and other measures, such as standard deviations, can
be used.

In a variation on this embodiment, if the selected node is a
parent node, instead of displaying the average value of the
metric over all leaf nodes under the parent, the system can
display a foreground distribution for the leaf nodes under the
parent. This foreground distribution is overlaid on a back-
ground distribution for the selected metric over all nodes in
the tree. (This overlaying process may involve using different
colors or different levels of transparency and translucency.)

The value of this chart is that a user can see how perfor-
mance for a particular branch of the hierarchy compares to the
entirety of the tree. This enables the user to make inferences
based on the behavior of a particular branch deviating from
the distribution of the computing environment as a whole, and
these inferences can help the user optimize performance of
the computing environment.

More specifically, FIG. 7B presents a flowchart illustrating
how the graph illustrated in FIG. 7A is generated in accor-
dance with the disclosed embodiments. First, the system
determines values for a performance metric for a plurality of
entities that comprise the computing environment (step 772).
Next, the system displays the computing environment as a
tree comprising nodes representing the plurality of entities
and edges representing parent-child relationships between
the plurality of entities (step 774). Then, for a selected node in
the tree, the system displays a chart with a line illustrating
how a value of the performance metric for the selected node
varies over time against a background illustrating how a dis-
tribution of the performance metric for a reference set of
nodes in the tree varies over time (step 776). Note that if the
selected node is a parent node, the value of the performance
metric for the selected node is an average value for the per-
formance metric across descendant nodes of the selected
node in the tree. Moreover, the background includes a stream
chart comprising regions associated with percentile ranges,
wherein borders between the regions represent one or more of
the following: a minimum value line, a 25% percentile line, a
50" percentile line, a 75 percentile line, a 957 percentile
line, a maximum value line, and a line associated with a
standard deviation.

Node Pinning

FIG. 8A illustrates how a performance state of anode inthe
tree can be “pinned” onto a pin board to facilitate compari-
sons with the states of other nodes in the tree in accordance
with the disclosed embodiments. For example, when a user
hovers a cursor over a node (say node 814), a pin icon is
displayedina tooltip. If the user clicks on the pin icon, a detail
panel for the node is displayed on a pin board 850 located on
the far right-hand side of the screen. Note that the state of this

US 9,417,774 B2

11

detail panel is frozen at the time of pinning. This means that
the user can manipulate the tree, for example by changing the
performance metric, time range or entity type, and this pinned
detail panel remains unchanged. The user can then pin
another node, or can pin the same node for a different metric
to pin board 850. This enables the user to compare different
performance metrics simultaneously. An exemplary node
detail panel 841 can include configuration information 842
for the entity associated with the node, and can also display a
graph 843 for the selected metric, such as a graph of CPU
utilization over time.

The content of the pinned detail panel 841 can vary as a
function of the type of node pinned. For example, the detail
panel for a host system can show information specifying that
host’s manufacturer and the number of network interface
cards and processors, while a detail panel for a virtual
machine can show information associated with provisioning
of the virtual machine, the guest OS running on it, etc. As
mentioned above, the second portion of the pinned detail
panel can display a graph for a selected metric. However, if
the pinned node is a branch node, instead of showing a dis-
tribution stream chart for the node, the system can display a
table with the top 50 most critical children in the branch,
wherein each entry in the table includes an indicator of the
performance state of the node, the name of the node, and a
sparkline for the selected metric value for that node over the
selected time range.

FIG. 8B presents a flowchart illustrating how a pin board is
displayed in accordance with the disclosed embodiments.
During operation, the system determines performance states
for a plurality of entities that comprise the computing envi-
ronment based on values of a performance metric for the
entities (step 882). Next, the system displays the computing
environment as a tree comprising nodes representing the plu-
rality of entities and edges representing parent-child relation-
ships between the plurality of entities (step 884). Then, in
response to the user selecting a first node in the tree to be
pinned, the system displays a first detail panel for the first
node, wherein the first detail panel displays state information
for the first node, wherein the state information is frozen at the
time of pinning (step 886). Next, in response to the user
selecting a second node in the tree to be pinned, the system
displays a second detail panel for the second node, wherein
the second detail panel displays state information for the
second node, wherein the state information is frozen at the
time of pinning (step 888). Note that displaying the first detail
panel concurrently with the second detail panel facilitates
comparing state information between the first and second
nodes.

Monitoring Tree for a Virtual Machine Environment

We next present some exemplary screen shots for a proac-
tive monitoring tree representing a virtual machine environ-
ment. This monitoring tree includes nodes for various entities
in the virtual machine environment. More specifically, these
entities include: a physical host system (HS), a virtual
machine (VM); a cluster comprising one or more host sys-
tems (CL); and a virtual center comprising one or more clus-
ters (VC). In some embodiments, the virtual machines are
automatically load-balanced among hosts in a cluster,
wherein virtual machines assigned to stand-alone hosts
remain on the stand-alone hosts permanently.

Before the proactive monitoring tree can be displayed, the
user selects a number of parameters for the tree as is illus-
trated in FIG. 9A. The illustrated parameters include: (1) an
entity type of “virtual machine;” (2) a performance type of
“CPU;” (3) an associated metric of “average CPU usage;” and
(4) a time range of “last 24 hours.” This causes the system to

10

15

20

25

30

35

40

45

50

55

60

12

aggregate the selected performance metric over the selected
time range for all matching entities of the selected entity type
in the virtual machine environment. For example, this can
involve taking an average (or some other aggregation) of
performance metric values for each entity over the selected
time range. Moreover, in a virtual-machine environment, the
selected entity type can be a “virtual machine” or a “host
system,” and the selection changes whether the leaf nodes
represent virtual machines or host systems. This is signifi-
cant, because the system gathers direct performance mea-
surements for the leaf nodes whose states bubble up to parent
nodes and are displayed in the parent nodes’ associated rings.
Next, the system compares the aggregated values against a set
of'user-defined thresholds to determine “performance states”
for the entities, wherein the performance states are displayed
using different colors. More specifically, the performance
states for a specific entity can be: a critical state (red), a
warning state (orange), a normal state (green), or an
unknown/offline state (gray).

The system then displays a proactive monitoring tree for
the selected performance metric as is illustrated in FIG. 9B.
The highest-level node in the tree illustrated in FIG. 9B is a
cluster node 901, which is colored red to indicate that the
ultimate children (leaf nodes) of cluster node 901 contain at
least one node in the critical state. Cluster node 901 has a
number of child nodes representing physical host systems,
including: node 902, colored red to indicate that at least one of
its child nodes is red; node 903, colored orange to indicate
that its worst child node is orange and none of its child nodes
are red; and node 904, colored green to indicate that its worst
child node is green and none of its child nodes are red or
orange. Note that when the user clicks on a node, the node
expands to reveal its child nodes at a lower level of the tree.

For each parent node in the tree, the system computes
counts of the performance states for all of the leaf nodes under
the parent node. This can involve maintaining an array for
each node containing counts of states of the leaf nodes asso-
ciated with each node or branch in the tree [red, orange, green,
gray]. In the case of a leaf node, the array for a leaf node
includes a single “1” value for the performance state of the
leaf node. The array for a parent node is computed by adding
the arrays for all immediate descendants of the parent node.

Around each node in the tree, the system displays a state
distribution ring comprising visually distinct sections associ-
ated with different performance states, wherein the visually
distinct sections are sized proportionately with the deter-
mined counts for the associated performance states. For
example, in FIG. 9C, node 905 is the root node of a tree, which
is surrounded by a ring with colored sections that represent
the proportions of states of the leaf nodes in the tree. Note that
15-20% of'this ring is red, which indicates that 15-20% of the
leaf nodes in the tree are red. Nodes 907-908 are surrounded
by rings that are completely green, which indicates that all of
their descendant nodes are green. Node 906 actually has a
higher proportion of red nodes than its siblings or parent.
However, it does not have the largest number of red nodes of
its siblings and hence does not appear on the far left-hand side
of'the tree in the sorted ordering of the siblings. Nevertheless,
node 906 may be interesting to examine because of its higher
proportion of red nodes.

As mentioned above, the nodes of the proactive monitoring
tree are organized in sorted order based on the states of the
nodes. This sorting can be accomplished as follows. We first
look at virtual centers (if there are more than one), and the
virtual center with the most reds is displayed on the far lefi-
hand side of the display. Then, within that virtual center, we
look at the clusters, and the cluster with the most reds in its

US 9,417,774 B2

13

branch goes on the far left. Then, within that cluster, we go to
the host system level, and the host system with the most reds
within that cluster goes on the far left. Finally, within the
leaves we sort the leaves red to orange to green to gray. If a
branch has no reds, it is always sorted after a node with at least
onered, and then its count of oranges is compared against the
other siblings with no reds; if a branch has no oranges, it
always falls behind anything with at least one orange. This
sorting system works in conjunction with the rings mentioned
above to allow the user to quickly determine where to look for
performance problems. The branches with the most reds and
the highest proportion of reds are typically the most interest-
ing to investigate. For example, the sorted ordering for an
exemplary set of sibling nodes is illustrated in FIG. 9D. The
sibling with the most reds appears on the far left. The sibling
with no reds appears to the far right and all the nodes in
between are sorted based on the number of reds they repre-
sent.

FIG. 9E presents an exemplary distribution stream chart
with a branch overlay. In this chart, the white line illustrates
an average value for the selected branch or entity, the middle
light-shaded region represents the middle 50% of the entities
in the tree, the lower dark-shaded region represents the lower
25% of the entities, and the upper dark-shaded region repre-
sents the 20% of the entities below the top 5% of the entities.

Finally, FIG. 9F illustrates an exemplary pin board 909
withtwo detail panels. The lower detail panel represents a leaf
node. It displays various configuration information for the
leafnode, such as the power state and number of CPUs. It also
displays a graph for the selected metric, which is overlaid on
a distribution for the selected metric across all nodes in the
tree. In contrast, the upper detail panel represents a parent
node. This parent panel displays configuration information,
such as the average effective CPU frequency in megahertz
and the average effective memory, for all leaf nodes under the
parent node. It also displays a sparkline for the selected per-
formance metric for each of the leaf nodes under the parent
node. These sparklines illustrate how the selected perfor-
mance metric varies over time.

Process of Gathering Data

‘We now provide additional details about how performance
data can be gathered. In general, this data-gathering process
can be used to gather any type of performance data from any
type of system that produces performance data, such as a
computer system, an aircraft, a nuclear reactor or a even
financial-trading system. In particular, the data-gathering
process can be applied to gather data in the virtual memory
monitoring system 210 illustrated in FIG. 2 above.

There is tremendous growth in the amount of data gener-
ated in the world. With decreasing storage costs and seem-
ingly infinite capacity due to cloud services, there are fewer
reasons to discard old data, and many reasons to keep it. As a
result, challenges have shifted towards extracting useful
information from massive quantities of data.

Mining a massive dataset is non-trivial but a more chal-
lenging task is to cross-correlate and mine multiple datasets
from various sources. For example, a datacenter monitors
data from thousands of components; the log format and col-
lection granularities vary by component type and generation.
The only underlying assumption that can be made is that each
component has a notion of time, either via timestamps or
event sequences, that is captured in the logs. As the quantity
and diversity of data grow, there is an increasing need for
performing full text searches to mine the data.

Another challenge is that a large fraction of the world’s
data is unstructured, making it difficult to index and query
using traditional databases. Even if a dataset is structured, the

20

25

30

40

45

50

55

14

specifics of the structure may evolve with time, for example,
as a consequence of system upgrades or more/less restrictive
data collection/retention policies.

SPLUNK® ENTERPRISE is software produced and sold
for on-premise and cloud use by Splunk Inc. of San Francisco,
Calif. SPLUNK ENTERPRISE is a comprehensive system
that generates, stores, retrieves, and searches event data.
SPLUNK® ENTERPRISE has gained particular appeal in
the market for deriving events from unstructured data and
machine data. It is the leading software for providing real-
time operational intelligence, enabling organizations to col-
lect, index, and harness machine-generated big data coming
from the websites, applications, servers, networks, mobile
devices, etc., that power their businesses.

At a high level, SPLUNK® ENTERPRISE can take raw
data, unstructured data, or machine data such as data in Web
logs, syslogs, sensor readings, etc., divide the data up into
portions, and optionally transform at least part of the data in
these portions to produce time-stamped events. The software
derives the time stamp for each event by extracting it from the
event data itself or by interpolating an event’s time stamp
relative to other events for which the software can derive a
time stamp. SPLUNK® ENTERPRISE then stores the events
in a time-series data store against which it can run queries to
retrieve events that meet specified criteria, such as having
certain keywords and/or having certain value(s) for certain
defined field(s).

SPLUNK® ENTERPRISE is particularly noteworthy for
employing a so-called “late-binding schema.” As noted, an
event in SPLUNK® ENTERPRISE typically contains a por-
tion of raw data (or a transformed version of such). To run
queries against events other than those involving keyword
searches, a schema can be developed. Such a schema can
include extraction rules for one or more fields. Each field can
be defined for a subset of the events in the data store and an
extraction rule can specify how to extract a value from each of
the subset of events for which the field has been defined. The
extraction rule for a field is often defined using a regular
expression (“regex” rule), and it associates event data with a
logical type of information that is contained within an event
for which it is defined. The term “late-binding schema” refers
to a system, such as in SPLUNK® ENTERPRISE, which
does not define the schema at index time as with database
technology; rather, in a system involving late-binding
schema, the schema can be developed on an ongoing basis up
until the time it needs to be applied (which is query time, as a
query often specifies the criteria for events of interest in terms
of'events having specified value(s) for specified field(s)). As a
data analyst learns more about the data in stored events, using
alate-binding schema, he can continue to develop the schema
up until the next time it is needed for a query.

Because SPLUNK® ENTERPRISE maintains the under-
lying searchable raw data and enables application of a late-
binding schema, it has great power to enable dynamic inves-
tigation of issues that arise as a data analyst learns more about
the data stored in the system’s events.

As discussed herein, “time-series data” and “time-series
machine data” may include, among other things, a series or
sequence of data points generated by one or more data
sources, computing devices, or sensors. Each data point may
be avalue, a small segment of data, or a large segment of data,
and each data point may be associated with a timestamp or be
associated with a particular point in time that provides the
basis for a timestamp for the data point. The series of data
points, or values/statistics derived from the data points, may
be plotted over a time range or time axis representing at least
a portion of the time range. The data can be structured,

US 9,417,774 B2

15

unstructured, or semi-structured and can come from files,
directories, network packets, network events, and/or sensors.
Unstructured data may refer, for example, to data whose
structure is not fully understood or appreciated at the time the
data is obtained by a data storage system, or it may refer to
data that was generated without a particular schema in mind
to facilitate the extraction of values for fields in the data
during a search on the data. Machine data generated by, for
example, data sources within an enterprise network environ-
ment is generally considered to be unstructured data. The
visualization of such time-series data may be used to display
statistical trends over time. The time-series machine data
collected from a data source may be segmented or otherwise
transformed into discrete events, where each event can be
associated with a timestamp.

An “event” may include a single record of activity from a
particular data source associated with a single timestamp.
Such an event may correspond to, for example, one or more
lines in a log file or other data input. Further, “events” may be
derived from processing or indexing machine data, as
described herein, or may include other kinds of events or
notable events described herein. Events can also correspond
to any time-series data, such as performance measurements of
an [T component (e.g., a computer cluster, node, host, virtual
machine, etc.), a sensor measurement, etc.

In an example, a field extractor within an enterprise net-
work environment may be configured to automatically iden-
tify (e.g., using regular expression-based rules, delimiter-
based rules, etc.) certain fields in the events while the events
are being created, indexed, and/or stored. Alternatively, one
or more fields can be identified within the events and added to
the field extraction rules (used by the field extractor to iden-
tify fields within the events) by a user using a variety of
techniques. Additionally, fields that correspond to metadata
about the events, such as a timestamp, host, source, and
source type for an event, may also be created; such fields may,
in some cases, be referred to as “default fields” if they are
determined automatically for all events at the time such
events are created, indexed, and/or stored.

In some implementations, a given tag or alias may be
assigned to a set of two or more fields to identify multiple
fields that correspond to equivalent pieces of information,
even though those fields may have different names or be
defined for different sets of events. A set of tags or aliases used
to identify equivalent fields in this way may be referred to as
a common information model.

Data generated by various data sources may be collected
and segmented into discrete events, each event corresponding
to data from a particular point in time. Examples of such data
sources include, but are not limited to, web servers, applica-
tion servers, databases, firewalls, routers, operating systems,
software applications executable at one or more computing
devices within the enterprise data system, mobile devices,
sensors, etc. The types of data generated by such data sources
may be in various forms including, for example and without
limitation, server log files, activity log files, configuration
files, messages, network packet data, performance measure-
ments or metrics, sensor measurements, etc.

FIG. 10 shows a block diagram of SPLUNK® ENTER-
PRISE’s data intake and query system, which provides an
example embodiment of a data intake and query system 1000.
Generally, the system 1000 includes one or more forwarders
1001 that collect data from a variety of different data sources
1005. The forwarders determine which indexer or indexers
are to receive the data and forward the data to one or more
indexers 1002. The data typically includes streams of time-
series data. Time-series data refers to any data that can be

15

20

25

30

35

40

45

16

segmented such that each segment can be associated with a
time stamp. The data can be structured, unstructured, or semi-
structured and can come from files and directories. Unstruc-
tured data is data that is not organized to facilitate the extrac-
tion of values for fields from the data, as is often the case with
machine data and web logs, two popular data sources for
SPLUNK® ENTERPRISE. Alternatively, heavy forwarders
can strip out extraneous data and detect time stamps for the
data. Based on the time stamps, the heavy forwarders can
index and group the data into buckets that fall within a com-
mon time span. The heavy forwarders then determine which
indexer or indexers are to receive each bucket of data and
forward the data to one or more indexers 1002.

FIG. 11 is a flowchart 1100 of a process that indexers 1002
may use to process, index, and store data received from the
forwarders 1001. At block 1101, an indexer 1002 receives
data from a forwarder 1001. At block 1102, the indexer seg-
ments the data into events. The data typically consists of
many lines of text that are separated by a carriage return or
line break. An event may consist of one or more of these lines.
The task of the indexer is to determine where an event begins
and ends in the lines of data. The indexer can use heuristics
that allow it to automatically determine how many lines con-
stitute an event. The indexer may be informed of the source of
the data and have a set of heuristic rules for the source. The
indexer may also be able to examine a sampling of the data
and automatically determine the source of the data and have a
set of heuristic rules for that source. These heuristics allow the
indexer to use regular expression-based rules, delimiter-
based rules, etc., to examine the text in each line in order to
combine lines of data to form an event. The indexer can
examine the text for event boundaries within the text that
include, but are not limited to: predefined characters, charac-
ter strings, etc. These may include certain punctuation marks
or special characters including, for example, carriage returns,
tabs, spaces, line breaks, etc. In some instances, a user can fine
tune or configure the rules that the indexers use to examine the
text in order to adapt to the user’s equipment.

The indexer determines a time stamp for each event at
block 1103. The time stamp can be determined by extracting
the time from data in the event or by interpolating the time
based on time stamps from other events. In some cases, a time
stamp can be determined from the time the data was received
or generated. The indexer associates the time stamp with each
event at block 1104. For example, the time stamp may be
stored as metadata for the event.

At block 1105, the data included in a given event can be
transformed. Such a transformation can include such actions
as removing part of an event (e.g., a portion used to define
event boundaries, extraneous text, characters, etc.) or remov-
ing redundant portions of an event. A user can specify a
portion to remove using a regular expression or any similar
method.

Optionally, a key word index can be built to facilitate fast
keyword searching of events. To build such an index, in block
1106, the indexer identifies a set of keywords contained in the
events. At block 1107, the indexer includes each identified
keyword in an index, which associates with each stored key-
word pointers to each event containing that keyword (or loca-
tions within events where that keyword is found). When an
indexer receives a keyword-based query, the indexer can then
consult this index to quickly find those events containing the
keyword without having to examine again each individual
event, thereby greatly accelerating keyword searches.

The indexer stores events in a data store at block 1108. The
data can be stored in working, short-term and/or long-term

US 9,417,774 B2

17

memory in a manner retrievable by query. The time stamp can
be stored along with each event to help optimize searching the
events by time range.

In some instances, the stored data includes a plurality of
individual storage buckets, each corresponding to a time
range. An event can then be stored in a bucket associated with
atime range inclusive of the event’s time stamp. This not only
optimizes time based searches, but it can allow events with
recent time stamps that may have a higher likelihood of being
accessed to be stored at preferable memory locations that lend
to quicker subsequent retrieval (such as flash memory instead
of hard disk media).

Data stores 1003 may be distributed across multiple index-
ers, each responsible for storing and searching a subset, or
buckets, of the events generated by the system. By distribut-
ing the time-based buckets among the indexers, the indexers
can find events responsive to a query in parallel using map-
reduce techniques, each returning their partial responses for
specific buckets to the query to a search head that combines
the results together to answer the query.

FIG. 12 is a flowchart 1200 of a process that a search head
1004 and indexers 1002 may perform during a typical search
query. At block 1201, a search head receives a query from a
client.

Atblock 1202, the search head is responsible for analyzing
the search query to determine what part can be delegated for
execution by indexers and what part needs to be executed by
the search head. Streaming commands can be trivially del-
egated to the indexers. Conversely, aggregating commands
are more complex to distribute.

The search head can perform optimization steps in order to
make the search more efficient. As mentioned above, the
indexers may create an index of keywords. In one optimiza-
tion, before the search starts executing, the search head deter-
mines the time range required for the search and a set of
common keywords that all matching events must have. The
retrieval phase uses these parameters to query the indexers for
a superset of the eventual results. The indexers return the
superset of results that the search head can perform a filtering
stage on. The filtering stage performs field extraction on the
superset to arrive at a reduced set of search results.

In another optimization, to achieve better computation dis-
tribution and minimize the amount of data transferred
between indexers and the search head, many aggregating
commands implement a map operation which the search head
can delegate to the indexers while executing the reduce opera-
tionlocally. FIG. 13 shows an example of a search query 1301
received from a client that the search head can split into two
parts: one part to be executed by indexers 1302 and one part
to be executed by the search head 1303. Here, the search
query 1302 makes the indexers responsible for counting the
results by host and then sending their results to the search
head. The search head then performs the merging 1303. This
achieves both computation distribution and minimal data
transfer.

The search head distributes the indexer search query to one
or more distributed indexers. The search query may contain
one or more regular expressions that the indexer is to apply to
any event data that is found to fall within the parameters of the
regular expression. These indexers can include those with
access to data stores having events responsive to the query.
For example, the indexers can include those with access to
events with time stamps within part or all of a time period
identified in the query.

At block 1203, one or more indexers to which the query
was distributed searches its data store for events responsive to
the query. To determine events responsive to the query, a

10

15

20

25

30

35

40

45

50

55

60

65

18

searching indexer finds events specified by the criteria in the
query. This criteria can include that the events have particular
keywords or contain a specified value or values for a specified
field or fields (because this employs a late-binding schema,
extraction of values from events to determine those that meet
the specified criteria occurs at the time this query is pro-
cessed). It should be appreciated that, to achieve high avail-
ability and to provide for disaster recovery, events may be
replicated in multiple data stores, in which case indexers with
access to the redundant events and not assigned as the primary
indexer for the events, would not respond to the query by
processing the redundant events. In an example, the indexer
finds events that it is the primary indexer for that fall within a
block of time specified by the one or more regular expres-
sions. The indexer then processes the contents of the events
using the one or more regular expressions, extracting infor-
mation associated with fields specified in the one or more
regular expressions. The indexers can either stream the rel-
evant events back to the search head or use the events to
calculate a partial result responsive to the query and send the
partial result back to the search head. At block 1204, the
search head combines or reduces all of the partial results or
events received from the parallel processing indexers together
to determine a final result responsive to the query.

Data intake and query system 1000 and the processes
described with respect to FIGS. 10-13 are further discussed
and elaborated upon in Carasso, David. Exploring Splunk
Search Processing Language (SPL) Primer and Cookbook.
New York: UM Research, 2012 and in Ledion Bitincka,
Archana Ganapathi, Stephen Sorkin, and Steve Zhang. Opti-
mizing data analysis with a semi-structured time series data-
base. In SLAML, 2010. Each of these references is hereby
incorporated by reference in its entirety for all purposes.

SPLUNK® ENTERPRISE can accelerate some queries
used to periodically generate reports that, upon each subse-
quent execution, are intended to include updated data. To
accelerate such reports, a summarization engine periodically
generates a summary of data responsive to the query defining
the report for a defined, non-overlapping subset of the time
period covered by the report. For example, where the query is
meant to identify events meeting specified criteria, a sum-
mary for a given time period may include only those events
meeting the criteria. Likewise, if the query is for a statistic
calculated from events, such as the number of events meeting
certain criteria, then a summary for a given time period may
be the number of events in that period meeting the criteria.

Because the report, whenever it is run, includes older time
periods, a summary for an older time period can save the work
of having to re-run the query on a time period for which a
summary was generated, so only the newer data needs to be
accounted for. Summaries of historical time periods may also
be accumulated to save the work of re-running the query on
each historical time period whenever the report is updated.

A process for generating such a summary or report can
begin by periodically repeating a query used to define a
report. The repeated query performance may focus on recent
events. The summarization engine determines automatically
from the query whether generation of updated reports can be
accelerated by creating intermediate summaries for past time
periods. If it can, then a summarization engine can periodi-
cally create a non-overlapping intermediate summary cover-
ing new data obtained during a recent, non-overlapping time
period and stores the summary in a summary data store.

In parallel to the creation of the summaries, the query
engine schedules the periodic updating of the report defined
by the query. At each scheduled report update, the query
engine determines whether intermediate summaries have

US 9,417,774 B2

19

been generated covering parts of the time period covered by
the current report update. If such summaries exist, then the
report is based on the information from the summaries;
optionally, if additional data has been received that has not yet
been summarized but that is required to generate a complete
report, then the query is run on this data and, together with the
data from the intermediate summaries, the updated current
report is generated. This process repeats each time an updated
report is scheduled for creation.

Search and report acceleration methods are described in
U.S. Pat. No. 8,589,403, issued on Nov. 19, 2013, and U.S.
Pat. No. 8,412,696, issued on Apr. 2, 2011, both of which are
hereby incorporated by reference in their entirety for all pur-
poses.

CONCLUSION

The disclosed embodiments relate to a system that displays
performance data for a computing environment. During
operation, the system first determines values for a perfor-
mance metric for a plurality of entities that comprise the
computing environment. Next, the system displays the com-
puting environment as a tree comprising nodes representing
the plurality of entities and edges representing parent-child
relationships between the plurality of entities. While display-
ing the tree, the system displays the child nodes for each
parent in sorted order based on values of the performance
metric associated with the child nodes.

In some embodiments, the system determines the values
for the selected performance metric by receiving, from a user,
a selection of the performance metric from a set of monitored
performance metrics; and then obtaining the values for the
selected performance metric for the plurality of entities from
the performance data for the computing environment.

In some embodiments, while determining the sorted order
for the child nodes, the system first determines a performance
state for each child node based on a value of the performance
metric for an entity associated with the child node, wherein
the performance states can include a critical state, a warning
state, a normal state, and an unknown state. Moreover, if a
child node has descendants in the tree, the performance state
associated with the child node includes performance states
for the descendants of the child node. Next, the system sorts
the child nodes based on the determined performance states,
wherein the sorted order is determined based on the number
of critical states associated with each child node.

In some embodiments, the system determines the perfor-
mance states for the plurality of entities by comparing the
values of the performance metric for the plurality of entities
against one or more state-specific threshold values to deter-
mine the associated performance states for the plurality of
entities.

In some embodiments, an entity can include: a host system;
a virtual machine; a cluster comprising one or more host
systems; and a virtual center comprising one or more clusters.

In some embodiments, the performance metric relates to
one or more of: central-processing unit (CPU) utilization;
memory utilization; disk utilization; and network utilization.

The disclosed embodiments also relate to a system that
displays performance data for a computing environment.
During operation, the system determines performance states
for a plurality of entities that comprise the computing envi-
ronment based on values of a performance metric for the
entities. Next, the system displays the computing environ-
ment as a tree comprising nodes representing the plurality of
entities and edges representing parent-child relationships
between the plurality of entities. Then, for each parent node in

15

20

40

45

20

the tree, the system determines counts of one or more perfor-
mance states for descendants of the parent node in the tree.
Finally, the system displays a graphical representation of the
determined counts while displaying the parent node.

In some embodiments, displaying the graphical represen-
tation of the determined counts includes displaying a circular
ring comprising visually distinct sections associated with
different performance states, wherein the visually distinct
sections are sized proportionately with the determined counts
for the associated performance states.

In some embodiments, while displaying each leaf node in
the tree, the system displays an indicator for a performance
state associated with the leaf node.

In some embodiments, for a selected node in the tree, the
system displays a chart with a line illustrating how a value of
the performance metric for the selected node varies over time,
wherein the line is displayed against a background illustrating
how a distribution of the performance metric for a reference
set of nodes in the tree varies over time.

In some embodiments, if the selected node is a parent node,
the value of the performance metric for the selected node is an
average value for the performance metric across descendant
nodes of the selected node in the tree.

In some embodiments, the background includes a stream
chart comprising regions associated with percentile ranges,
wherein borders between the regions represent one or more of
the following: a minimum value line, a 25% percentile line, a
50" percentile line, a 75 percentile line, a 957 percentile
line, a maximum value line, and a line associated with a
standard deviation.

In some embodiments, in response to the user selecting a
first node in the tree to be pinned, the system displays a first
detail panel for the first node, wherein the first detail panel
displays state information for the first node, wherein the state
information is frozen at the time of pinning. Moreover, in
response to the user selecting a second node in the tree to be
pinned, the system displays a second detail panel for the
second node, wherein the second detail panel displays state
information for the second node, wherein the state informa-
tion is frozen at the time of pinning. Note that the first detail
panel is displayed concurrently with the second detail panel
to facilitate comparing state information between the first and
second nodes.

In some embodiments, the state information for the first
node displayed in the first detail panel includes: configuration
information for the first node; and a graph displaying values
of the first performance metric for the first node over a time
interval.

In some embodiments, if the first node is a parent node in
the tree, the state information for the first node displayed in
the first detail panel includes: aggregated configuration infor-
mation for one or more descendants of'the first node; and one
or more graphs displaying values of the first performance
metric for the one or more descendants of the first node.

In some embodiments, if the first node and the second node
are the same node, and if the user selects a second perfor-
mance metric prior to selecting the second node to be pinned,
while displaying the first detail panel the system displays
state information for the first performance metric, and while
displaying the second detail panel the system displays state
information for the second performance metric. Note that the
concurrent display of the first and second detail panels
enables the user to view state for the first and second perfor-
mance metrics for the same node at the same time.

The detailed description that appears above is presented to
enable any person skilled in the art to make and use the
disclosed embodiments, and is provided in the context of a

US 9,417,774 B2

21

particular application and its requirements. Various modifi-
cations to the disclosed embodiments will be readily apparent
to those skilled in the art, and the general principles defined
herein may be applied to other embodiments and applications
without departing from the spirit and scope of the disclosed
embodiments. Thus, the disclosed embodiments are not lim-
ited to the embodiments shown, but are to be accorded the
widest scope consistent with the principles and features dis-
closed herein.

The data structures and code described in this detailed
description are typically stored on a computer-readable stor-
age medium, which may be any device or medium that can
store code and/or data for use by a system. The computer-
readable storage medium includes, but is not limited to, vola-
tile memory, non-volatile memory, magnetic and optical stor-
age devices such as disk drives, magnetic tape, CDs (compact
discs), DVDs (digital versatile discs or digital video discs), or
other media capable of storing code and/or data now known or
later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored on a non-transitory computer-readable
storage medium as described above. When a system reads and
executes the code and/or data stored on the non-transitory
computer-readable storage medium, the system performs the
methods and processes embodied as data structures and code
and stored within the non-transitory computer-readable stor-
age medium.

Furthermore, the methods and processes described below
can be included in hardware modules. For example, the hard-
ware modules can include, but are not limited to, application-
specific integrated circuit (ASIC) chips, field-programmable
gate arrays (FPGAs), and other programmable-logic devices
now known or later developed. When the hardware modules
are activated, the hardware modules perform the methods and
processes included within the hardware modules.

Moreover, the foregoing descriptions of disclosed embodi-
ments have been presented only for purposes of illustration
and description. They are not intended to be exhaustive or to
limit the disclosed embodiments to the forms disclosed.
Accordingly, many modifications and variations will be
apparent to practitioners skilled in the art.

Additionally, the above disclosure is not intended to limit
the disclosed embodiments. The scope of the disclosed
embodiments is defined by the appended claims.

What is claimed is:

1. A computer-implemented method for displaying perfor-
mance data for a computing environment, the method com-
prising:

displaying the computing environment as a tree including

nodes representing a plurality of entities that comprise
the computing environment and edges representing par-
ent-child relationships between the plurality of entities,
wherein the displayed tree indicates values of a first
performance metric for each node in the tree; and

in response to the user selecting a first node in the tree to be

pinned, displaying a first detail panel for the first node
concurrently with displaying the tree, wherein the first
detail panel displays state information for the first node
that remains unchanged after pinning;

wherein when the first node is a parent node, the state

information for the first node displayed in the first detail
panel includes one or more graphs displaying values of
the first performance metric for descendants of the first
node;

wherein when the first node is a leaf node, the state infor-

mation for the first node displayed in the first detail panel

20

25

30

35

40

45

60

65

22

includes a graph displaying values of the first perfor-
mance metric for the first node;

in response to the user selecting a second node in the tree to

be pinned, displaying a second detail panel for the sec-
ond node concurrently with displaying the tree, wherein
the second detail panel displays state information for the
second node that remains unchanged after pinning; and
wherein the first detail panel is displayed concurrently with
the second detail panel to facilitate comparing state
information between the first and second nodes.
2. The computer-implemented method of claim 1,
wherein when the first node is a parent node, the state
information for the first node displayed in the first detail
panel includes an aggregated configuration information
of one or more descendants of the first node; and
wherein when the first node is a leaf node, the state infor-
mation for the first node displayed in the first detail panel
includes a configuration information for the first node.

3. The computer-implemented method of claim 1, wherein
when the first node and the second node are the same node,
and when the user selects a second performance metric prior
to selecting the second node to be pinned:

displaying the first detail panel involves displaying state

information for the first performance metric;
displaying the second detail panel involves displaying state
information for the second performance metric; and
wherein the concurrent display of the first and second
detail panels enables the user to view state for the first
and second performance metrics for the same node at the
same time.
4. The computer-implemented method of claim 1, wherein
prior to displaying the tree, the method further comprises:
receiving, from a user, a selection of the first performance
metric from a set of monitored performance metrics; and

obtaining the values for the first performance metric for the
plurality of entities from the performance data for the
computing environment.

5. The computer-implemented method of claim 1, wherein
an entity can include:

a virtual machine;

a host system that executes one or more virtual machines;

a cluster comprising one or more host systems; and

a virtual center comprising one or more clusters.

6. The computer-implemented method of claim 1, wherein
the first performance metric relates to one or more of:

central-processing unit (CPU) utilization;

memory utilization;

disk utilization;

network utilization; and

power consumption.

7. The computer-implemented method of claim 1, wherein
the performance metric is measured over a user-specified
time interval.

8. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform a method for displaying perfor-
mance data for a computing environment, the method com-
prising:

displaying the computing environment as a tree including

nodes representing a plurality of entities that comprise
the computing environment and edges representing par-
ent-child relationships between the plurality of entities,
wherein the displayed tree indicates values of a first
performance metric for each node in the tree; and
inresponse to the user selecting a first node in the tree to be
pinned, displaying a first detail panel for the first node
concurrently with displaying the tree, wherein the first

US 9,417,774 B2

23

detail panel displays state information for the first node
that remains unchanged after pinning;

wherein when the first node is a parent node, the state

information for the first node displayed in the first detail
panel includes one or more graphs displaying values of
the first performance metric for descendants of the first
node;

wherein when the first node is a leaf node, the state infor-

mation for the first node displayed in the first detail panel
includes a graph displaying values of the first perfor-
mance metric for the first node;

in response to the user selecting a second node in the tree to

be pinned, displaying a second detail panel for the sec-
ond node concurrently with displaying the tree, wherein
the second detail panel displays state information for the
second node that remains unchanged after pinning; and
wherein the first detail panel is displayed concurrently with
the second detail panel to facilitate comparing state
information between the first and second nodes.

9. The non-transitory computer-readable storage medium
of claim 8,

wherein when the first node is a parent node, the state

information for the first node displayed in the first detail
panel includes an aggregated configuration information
of one or more descendants of the first node; and
wherein when the first node is a leaf node, the state infor-
mation of'the first node displayed in the first detail panel
includes a configuration information for the first node.
10. The non-transitory computer-readable storage medium
of claim 8,
wherein when the first node and the second node are the
same node, and when the user selects a second perfor-
mance metric prior to selecting the second node to be
pinned,
displaying the first detail panel involves displaying state
information for the first performance metric;
displaying the second detail panel involves displaying
state information for the second performance metric;
and
wherein the concurrent display of the first and second
detail panels enables the user to view state for the first
and second performance metrics for the same node at
the same time.
11. The non-transitory computer-readable storage medium
of claim 8, wherein prior to displaying the tree, the method
further comprises:
receiving, from a user, a selection of the first performance
metric from a set of monitored performance metrics; and

obtaining the values for the first performance metric for the
plurality of entities from the performance data for the
computing environment.

12. The non-transitory computer-readable storage medium
of claim 8, wherein an entity can include:

a virtual machine;

a host system that executes one or more virtual machines;

a cluster comprising one or more host systems; and

a virtual center comprising one or more clusters.

13. The non-transitory computer-readable storage medium
of claim 8, wherein the first performance metric relates to one
or more of:

central-processing unit (CPU) utilization;

memory utilization;

disk utilization;

network utilization; and

power consumption.

5

10

15

20

25

30

35

40

45

50

55

65

24

14. The non-transitory computer-readable storage medium
of claim 8, wherein the performance metric is measured over
a user-specified time interval.

15. A system that displays performance data for a comput-
ing environment, the method comprising:

a computing cluster comprising a plurality of processors

and associated memories; and

a performance-monitoring mechanism that executes on the

computing cluster, wherein during operation the perfor-

mance-monitoring mechanism:

displays the computing environment as a tree including
nodes representing a plurality of entities that com-
prise the computing environment and edges repre-
senting parent-child relationships between the plural-
ity of entities, wherein the displayed tree indicates
values of a first performance metric for each node in
the tree; and

in response to the user selecting a first node in the tree to
be pinned, displays a first detail panel for the first node
concurrently with displaying the tree, wherein the
first detail panel displays state information for the first
node that remains unchanged after pinning;

wherein when the first node is a parent node, the state
information for the first node displayed in the first
detail panel includes one or more graphs displaying
values of the first performance metric for descendants
of the first node;

wherein when the first node is a leaf node, the state
information for the first node displayed in the first
detail panel includes a graph displaying values of the
first performance metric for the first node;

in response to the user selecting a second node in the tree
to be pinned, displays a second detail panel for the
second node concurrently with displaying the tree,
wherein the second detail panel displays state infor-
mation for the second node that remains unchanged
after pinning; and

wherein the first detail panel is displayed concurrently
with the second detail panel to facilitate comparing
state information between the first and second nodes.

16. The system of claim 15,

wherein when the first node is a parent node, the state

information for the first node displayed in the first detail
panel includes an aggregated configuration information
of one or more descendants of the first node; and
wherein when the first node is a leaf node, the state infor-
mation of'the first node displayed in the first detail panel
includes a configuration information for the first node.

17. The system of claim 15, wherein when the first node
and the second node are the same node, and when the user
selects a second performance metric prior selecting the sec-
ond node to be pinned:

while displaying the first detail panel, the performance-

monitoring mechanism displays state information for
the first performance metric;

while displaying the second detail panel, the performance-

monitoring mechanism displays state information for
the second performance metric; and

wherein the concurrent display of the first and second

detail panels enables the user to view state for the first
and second performance metrics for the same node at the
same time.

18. The system of claim 15, wherein prior to displaying the
tree, the performance-monitoring mechanism:

receives, from a user, a selection of the first performance

metric from a set of monitored performance metrics; and

US 9,417,774 B2
25 26

obtains the values for the first performance metric for the
plurality of entities from the performance data for the
computing environment.

19. The system of claim 15, wherein an entity can include:

a virtual machine; 5

a host system that executes one or more virtual machines;

a cluster comprising one or more host systems; and

a virtual center comprising one or more clusters.

20. The system of claim 15, wherein the first performance

metric relates to one or more of: 10

central-processing unit (CPU) utilization;

memory utilization;

disk utilization;

network utilization; and

power consumption. 15

#* #* #* #* #*

